Muaadh Mohideen, Ashishvarma Datla, Mohamed Ejaz Ahamed Feroz, and Adam Elsayed

                                                                                                                                            

Abstract:

Three-dimensional (3D) bioprinting represents one of the most developing fields of biomedical engineering and regenerative medicine. 3D bioprinting integrates the use of additive manufacturing used to create devices with the biological understanding of human and animal physiology to create complex tissues and organs from scratch using various bioinks and biological scaffolds. The engineering perspective comes in 3D printing through the lens of biomechanics to implement the material, innovative bioink properties, scaffold designs, and printing techniques for precise layering. However, scientific persuasion must still overcome issues with cell health post printing, construction vascularization & functionality, and generated tissue durability. Through the lens of a medical approach, 3D printing holds a great deal of value for regenerative medicine such as skin grafts, craniofacial surgery, orthopedic procedures, dental solutions, and organs for transplant. There are some clinical limitations which can be overseen through regulatory concerns, biocompatibility challenges, and ethical issues . Finally, from a business standpoint, this market has significant potential. 3D bioprinting affects new market generation from pharmaceutical testing in 3D bioprinted lungs and tumor constructs to expansion in regenerative patches with future goals for anatomical perfection. Bioprinting is already commercially effective in small markets, but larger endeavors are limited due to scalable and reproducible inadequacies in research materials along with high research costs. The market for this is mostly in research and development (R&D) stages and is expected to gradually increase in demand over time in effective pharmaceutical testing and academic solutions, but no solid predictions for widespread clinical applicability for decades. This paper assesses 3D organ bioprinting through the lenses of engineering, medicine, and business to determine the realities of viability, practicality, and ethics in new interdisciplinary integration. Without a multidisciplinary approach gained through an understanding of all three perspectives, 3D bioprinting cannot achieve its full potential to change the world.